The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110516
PDF

Performance Analysis of Transient Fault-Injection and Fault-Tolerant System for Digital Circuits on FPGA

Author 1: Sharath Kumar Y N
Author 2: Dinesha P

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A Fault-Tolerant System is necessary to improve the reliability of digital circuits with the presence of Fault Injection and also improves the system performance with better Fault Coverage. In this work, an efficient Transient Fault-Injection system (FIS) and Fault-Tolerant System (FTS) are designed for digital circuits. The FIS includes Berlekamp Massey Algorithm (BMA) based LFSRs, with fault logic followed by one – hot-encoder register, which generates the faults. The FTS is designed using Triple-Modular-Redundancy (TMR) and Dual Modular- Redundancy (DMR). The TMR module is designed using the Majority Voter Logic (MVL), and DMR is designed using Self-Voter Logic (SVL) for digital circuits such as synchronous and asynchronous circuits. The four different MVL approaches are designed in the TMR module for digital circuits. The FIS-FTS module is designed on Xilinx-ISE 14.7 environment and implemented on Artix-7 FPGA. The synthesis results include chip area, gate count, delay, and power are analyzed along with fault tolerance, and coverage for given digital circuits. The fault tolerance is analyzed using Modelsim-simulator. The FIS-FTS module covers an average of 99.17% fault coverage for both synchronous and asynchronous circuits.

Keywords: Digital circuits; transient fault; fault injection; fault tolerant; triple modular redundancy; dual modular redundancy; majority voter logic; self-voter logic

Sharath Kumar Y N and Dinesha P, “Performance Analysis of Transient Fault-Injection and Fault-Tolerant System for Digital Circuits on FPGA” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110516

@article{N2020,
title = {Performance Analysis of Transient Fault-Injection and Fault-Tolerant System for Digital Circuits on FPGA},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110516},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110516},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Sharath Kumar Y N and Dinesha P}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org