The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110517
PDF

Evaluation of the Diffusion Phenomenon using Information from Twitter

Author 1: Kohei Otake
Author 2: Takashi Namatame

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Social media services, including social networking services (SNSs) and microblogging services, are gaining prominence. SNSs have a variety of information on products and services, such as product introductions, utilization methods, and reviews. It is important for companies to utilize SNSs to understand the various ways of engaging with them. Against this backdrop, numerous studies have focused on marketing activities (e.g., consumer behavior and sales promotion) using information on the internet from sources such as SNSs, blogs, and news sites. In particular, to understand the dissemination of information on the Internet, various researchers have undertaken studies pertaining to the diffusion phenomenon occurring in the real world. Here, topic diffusion is a phenomenon whereby a certain topic is shared with several other users. In this study, we aimed to evaluate the diffusion phenomenon on Twitter. In particular, we focused on the state of a targeted topic and analyzed the estimation of the topic using natural language processing (NLP) and time series analysis. First, we collected tweets containing four titles of animation broadcasts using hashtags. Approximately 250,000 tweets were posted on Twitter in a month. Second, we used NLP methods such as morphological analysis and N-gram analysis to characterize the contents of each title. Third, using the time series data for the tweets, we created a mixture model that replicated the diffusion phenomenon. We clustered the diffusion phenomenon using this model. Finally, we combined the features related to the content of the tweets and the results of the clustering of the diffusion phenomenon and evaluated them.

Keywords: Twitter; diffusion phenomenon; natural language processing; mixture model

Kohei Otake and Takashi Namatame, “Evaluation of the Diffusion Phenomenon using Information from Twitter” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110517

@article{Otake2020,
title = {Evaluation of the Diffusion Phenomenon using Information from Twitter},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110517},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110517},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Kohei Otake and Takashi Namatame}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org