The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Measuring the Similarity between the Sanskrit Documents using the Context of the Corpus

Author 1: Jatinderkumar R. Saini
Author 2: Prafulla B. Bafna

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110521

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Identifying the similarity between two documents is a challenging but important task. It benefits various applications like recommender systems, plagiarism detection and so on. To process any text document one of the popularly used approaches is document term matrix (DTM). The proposed approach processes the oldest, untouched, one of the morphologically critical languages, Sanskrit and builds a document term matrix for Sanskrit (DTMS) and Document synset matrix Sanskrit (DSMS). DTMS uses the frequency of the term whereas DSMS uses the frequency of synset instead of term and contributes to the dimension reduction. The proposed approach considers the semantics and context of the corpus to solve the problem of polysemy. More than 760 documents including Subhashitas and stories are processed together. F1 Score, precision, Matthews Correlation coefficient (MCC) which is the most balanced measure and accuracy are used to prove the betterment of the proposed approach.

Keywords: Cosine; dimension reduction; sanskrit; synset; matthews correlation coefficient

Jatinderkumar R. Saini and Prafulla B. Bafna, “Measuring the Similarity between the Sanskrit Documents using the Context of the Corpus” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110521

@article{Saini2020,
title = {Measuring the Similarity between the Sanskrit Documents using the Context of the Corpus},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110521},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110521},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Jatinderkumar R. Saini and Prafulla B. Bafna}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org