The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110522
PDF

An Efficient Model for Mining Outlier Opinions

Author 1: Neama Hassan
Author 2: Laila A. Abd-Elmegid
Author 3: Yehia K. Helmy

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the internet era, opinion mining became a critical technique used in many applications. The internet offers a featured chance for users to express and share their views and experiences anywhere and at any time through various methods as online reviews, personal blogs, Facebook, Twitter and companies’ websites. Such treasure of online data generated by users play an essential role in decision-making process and have the ability to make radical changes in several fields. Although the opinionated text can provide significantly invaluable information for the wide community either are individuals, business, or government, the outlier or anomaly opinions could have the same impact but in opposite manner which harm these fields. Consequently, there is an urge to develop techniques to detect the outlier opinions and avoid their negative impacts on several application domains which rely on opinion mining. In this paper, an efficient model for mining outlier opinions has been proposed. The proposed MOoM model, stands for Mining Outlier Opinion Model, offers for the first time the ability to mine outlier opinions from product’s free-text reviews. Accordingly, it can help the decision makers to improve the overall sentiment analysis process and perform further analysis on the outlier opinions to get better understanding for them and avoid their negative impact. The proposed model consists of three modules; Data preprocessing module, Opinion mining module, and outlier opinions detection module. The proposed model utilizes the lexicon-based approach to extract sentiment polarity from each review in the dataset. Also, it uses the Distance-based outlier detection algorithm to produce a graded list of review holders with outlier opinions. Experimental study is presented to evaluate the proposed model and the results proved the model’s ability to detect outlier opinions in the product reviews effectively. The model is adaptable to be used in other fields rather than product’s reviews by customizing its modules’ layers.

Keywords: Opinion mining; sentiment analysis; anomaly detection; outliers; reviews; text analysis; natural language processing; rapidminer

Neama Hassan, Laila A. Abd-Elmegid and Yehia K. Helmy, “An Efficient Model for Mining Outlier Opinions” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110522

@article{Hassan2020,
title = {An Efficient Model for Mining Outlier Opinions},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110522},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110522},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Neama Hassan and Laila A. Abd-Elmegid and Yehia K. Helmy}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org