The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

New Learning Approach for Unsupervised Neural Networks Model with Application to Agriculture Field

Author 1: Belattar Sara
Author 2: Abdoun Otman
Author 3: El khatir Haimoudi

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110548

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: An accurate and lower cost hybrid machine learning algorithm based on a combination of Kohonen-Self Organizing Map (SOM) and Gram-Schmidt (GSHM) algorithm was proposed, to enhance the crop yield prediction and to increase the agricultural production. The combination of GSHM and SOM allows to withdraw the most informative components about our data, by overcoming correlation issues between input data prior to the training process. The improved hybrid algorithm was trained firstly on data that have a correlation problem, and it was compared with another hybrid model based on SOM and Principal Component Analysis (PCA), secondly, it was trained using selected soil parameters related to the atmosphere (e.g. pH, nitrogen, phosphate, potassium, depth, temperature, and rainfall). A comparative study with the standard SOM was conducted. The improved Kohonen-Self Organizing Map when applied to correlated data, demonstrated better results in terms of classification accuracy (8/8), and rapidity = 0.015s compared to a classification accuracy (7/8) and a rapidity = 97,828 s using SOM combined with PCA. Moreover, the proposed algorithm resulted in better results for crop prediction in terms of maximum iteration number of 675, mean error ≤0.00022, and rapidity = 18.422s versus an iteration number of 729, mean error ≤ 0.000916 and rapidity= 23.707s with the standard SOM. The proposed algorithm allowed us to overcome correlation issues, and to improve the classification, learning process, and rapidity, with the potential to apply for predicting crop yield in the agricultural field.

Keywords: Kohonen-self organizing map; gram-schmidt algorithm; principal component analysis; agriculture field; crop yield prediction

Belattar Sara, Abdoun Otman and El khatir Haimoudi, “New Learning Approach for Unsupervised Neural Networks Model with Application to Agriculture Field” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110548

@article{Sara2020,
title = {New Learning Approach for Unsupervised Neural Networks Model with Application to Agriculture Field},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110548},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110548},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Belattar Sara and Abdoun Otman and El khatir Haimoudi}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org