The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110505
PDF

An Abnormal Behavior Detection Method using Optical Flow Model and OpenPose

Author 1: Zhu Bin
Author 2: Xie Ying
Author 3: Luo Guohu
Author 4: Chen Lei

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Abnormal behavior detection and recognition of pedestrian in escalator has always been a challenging task in intelligent video surveillance system. To cope this problem, a method combining optical flow vector of passenger with human skeleton extraction is proposed. At first, adaptive dual fractional order optical flow model is used to estimate the optical flow field under scenes with illumination changes, low contrast and uneven illumination. At the same time, the OpenPose deep convolutional neural network is used to extract body skeleton and persons in image can be located. Then, the optical flow field and the human skeleton are combined to obtain the optical flow vector of the passenger head. After that the optical flow field of the passenger head and the step of escalator under the passenger foot are used for abnormal behavior detection and recognition, random forest is employed to behavior classifier. Experimental results show that our proposed method and its improvement strategy can accurately estimate the optical flow field in real time of low contrast outdoor videos with insufficient illumination, uneven brightness and illumination changes, the accuracy of abnormal action detection and recognition can reach to 97.98% and 92.28%.

Keywords: Image sequence analysis; abnormal behavior recognition; fractional order variational optical flow model; random forest

Zhu Bin, Xie Ying, Luo Guohu and Chen Lei, “An Abnormal Behavior Detection Method using Optical Flow Model and OpenPose” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110505

@article{Bin2020,
title = {An Abnormal Behavior Detection Method using Optical Flow Model and OpenPose},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110505},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110505},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Zhu Bin and Xie Ying and Luo Guohu and Chen Lei}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org