The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Multiclass Pattern Recognition of Facial Images using Correlation Filters

Author 1: Nisha Chandran S
Author 2: Charu Negi
Author 3: Poonam Verma

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110556

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Pattern Recognition comes naturally to humans and there are many pattern recognition tasks which humans can perform admirably well. However, human pattern recognition cannot compete with machine speed when the number of classes to be recognized becomes tremendously large. In this paper, we analyze the effectiveness of correlation filters for pattern classification problems. We have used Distance Classifier Correlation Filter (DCCF) for pattern classification of facial images. Two essential qualities of a correlation filter are distortion tolerance and discrimination ability. DCCF transposes the feature space in such a way that the images belonging to the same class gets closer and the images from different class moves far apart; thereby increasing the distortion tolerance and the discrimination ability. The results obtained demonstrate the effectiveness of the approach for face recognition applications.

Keywords: Pattern recognition; correlation filter; multiclass recognition

Nisha Chandran S, Charu Negi and Poonam Verma, “Multiclass Pattern Recognition of Facial Images using Correlation Filters” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110556

@article{S2020,
title = {Multiclass Pattern Recognition of Facial Images using Correlation Filters},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110556},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110556},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Nisha Chandran S and Charu Negi and Poonam Verma}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org