The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110557
PDF

Analytical Comparison Between the Information Gain and Gini Index using Historical Geographical Data

Author 1: Majid Zaman
Author 2: Sameer Kaul
Author 3: Muheet Ahmed

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The historical geographical data of Kashmir province is spread across two disparate files having attributes of Maximum Temperature, Minimum Temperature, Humidity measured at 12 A.M., Humidity measured at 3 P.M., rainfall besides auxiliary parameters like date, year etc. The parameters Maximum Temperature, Minimum Temperature, Humidity measured at 12 A.M., Humidity measured at 3 P.M. are continuous in nature and here, in this study, we applied Information Gain and Gini Index on these attributes to convert continuous data into discrete values, their after we compare and evaluate the generated results. Of the four attributes, two have same results for Information Gain and Gini Index; one attribute has overlapping results while as only one attribute has conflicting results for Information Gain and Gini Index. Subsequently, continuous valued attributes are converted into discrete values using Gini index. Irrelevant attributes are not considered and auxiliary attributes are labeled accordingly. Consequently, the data set is ready for the application of machine learning (decision tree) algorithms.

Keywords: Geographical data mining; information gain; Gini index; machine learning; decision tree

Majid Zaman, Sameer Kaul and Muheet Ahmed, “Analytical Comparison Between the Information Gain and Gini Index using Historical Geographical Data” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110557

@article{Zaman2020,
title = {Analytical Comparison Between the Information Gain and Gini Index using Historical Geographical Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110557},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110557},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Majid Zaman and Sameer Kaul and Muheet Ahmed}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org