The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110580
PDF

A High Performance System for the Diagnosis of Headache via Hybrid Machine Learning Model

Author 1: Ahmad Qawasmeh
Author 2: Noor Alhusan
Author 3: Feras Hanandeh
Author 4: Maram Al-Atiyat

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Headache has been a major concern for patients, medical doctors, clinics and hospitals over the years due to several factors. Headache is categorized into two major types:(1) Primary Headache, which can be tension, cluster or migraine, and (2) Secondary Headache where further medical evaluation must be considered. This work presents a high performance Headache Prediction Support System (HPSS). HPSS provides preliminary guidance for patients, medical students and even clinicians for initial headache diagnosis. The mechanism of HPSS is based on a hybrid machine learning model. First, 19 selected attributes (questions) were chosen carefully by medical specialists according to the most recent International Classification of Headache Disorders (ICHD-3) criteria. Then, a questionnaire was prepared to confidentially collect data from real patients under the supervision of specialized clinicians at different hospitals in Jordan. Later, a hybrid solution consisting of clustering and classification was employed to emphasize the diagnosis results obtained by clinicians and to predict headache type for new patients respectively. Twenty-six (26) different classification algorithms were applied on 614 patients’ records. The highest accuracy was obtained by integrating K-Means and Random Forest with a migraine accuracy of 99.1% and an overall accuracy of 93%. Our web-based interface was developed over the hybrid model to enable patients and clinicians to use our system in the most convenient way. This work provides a comparative study of different headache diagnosis systems via 9 different performance metrics. Our hybrid model shows a great potential for highly accurate headache prediction. HPSS was used by different patients, medical students, and clinicians with a very positive feedback. This work evaluates and ranks the impact of headache symptoms on headache diagnosis from a machine learning perspective. This can help medical experts for further headache criteria improvements.

Keywords: High performance computing; Clinical Decision Support System (CDSS); machine learning; primary and secondary headache; performance analysis and improvement; headache diag-nosis; open medical application

Ahmad Qawasmeh, Noor Alhusan, Feras Hanandeh and Maram Al-Atiyat, “A High Performance System for the Diagnosis of Headache via Hybrid Machine Learning Model” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110580

@article{Qawasmeh2020,
title = {A High Performance System for the Diagnosis of Headache via Hybrid Machine Learning Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110580},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110580},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Ahmad Qawasmeh and Noor Alhusan and Feras Hanandeh and Maram Al-Atiyat}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org