The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110619
PDF

Handwritten Arabic Characters Recognition using a Hybrid Two-Stage Classifier

Author 1: Amjad Ali Al-Jourishi
Author 2: Mahmoud Omari

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 6, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Handwritten Arabic character recognition presents a big challenge to researchers in the field of pattern recognition. Arabic characters are characterized by their highly-cursive nature and many of them have a similar appearance. For example, the only difference between some of the alphabet characters is the existence of a number dots above or below the main character shape. This paper proposes a system for isolated off-line handwritten Arabic character recognition using the Discrete Cosine Transform (DCT) as the feature extraction method and a two-stage hybrid classifier. The two stages are a Support Vector Machine (SVM) and a neural network (NN). The first stage is a two-class SVM classifier which classifies a character either a character with dot(s) or without dot(s). The output of this stage is used to extend the feature vector of the character by the class value to give it an extra unique feature. The extend feature vector is fed to a multi-class neural network model to classify the character. The proposed approach is tested on a database of Arabic handwritten characters called AlexU Isolated Alphabet (AIA9K) containing 8,737 character images. The experimental results of the first stage classifier showed a high recognition accuracy rate of 99.14%. The proposed two-stage hybrid classifier obtained an average recognition accuracy rate of 91.84% over all Arabic Alphabet characters.

Keywords: Arabic character recognition; Support Vector Machine (SVM); neural network (NN); hybrid classifier

Amjad Ali Al-Jourishi and Mahmoud Omari, “Handwritten Arabic Characters Recognition using a Hybrid Two-Stage Classifier” International Journal of Advanced Computer Science and Applications(IJACSA), 11(6), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110619

@article{Al-Jourishi2020,
title = {Handwritten Arabic Characters Recognition using a Hybrid Two-Stage Classifier},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110619},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110619},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {6},
author = {Amjad Ali Al-Jourishi and Mahmoud Omari}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org