The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110632
PDF

Image Detection Model for Construction Worker Safety Conditions using Faster R-CNN

Author 1: Madihah Mohd Saudi
Author 2: Aiman Hakim Ma’arof
Author 3: Azuan Ahmad
Author 4: Ahmad Shakir Mohd Saudi
Author 5: Mohd Hanafi Ali
Author 6: Anvar Narzullaev
Author 7: Mohd Ifwat Mohd Ghazali

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 6, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Many accidents occur on construction sites leading to injury and death. According to the Occupational Safety Health Administration (OSHA), falls, electrocutions, being struck-by-objects and being caught in or between an object were the four main causes of worker deaths on construction sites. Many factors contribute to the increase in accidents, and personal protective equipment (PPE) is one of the defense mechanisms used to mitigate them. Thus, this paper presents an image detection model about workers’ safety conditions based on PPE compliance by using the Faster Region-based Convolutional Neural Networks (R-CNN) algorithm. This experiment was conducted using Tensorflow involving 1,129 images from the MIT Places Database (from Scene Recognition) as a training dataset, and 333 anonymous dataset images from real construction sites for evaluation purposes. The experimental results showed 276 of the images being detected as safe, and an average accuracy rate of 70%. The strength of this paper is based on the image detection of the three PPE combinations, involving hardhats, vests and boots in the case of construction workers. In future, the threshold and image sharpness (low resolution) will be two main characteristics of further refinement in order to improve the accuracy rate.

Keywords: PPE; OSH; accident; construction site; image detection; faster R-CNN

Madihah Mohd Saudi, Aiman Hakim Ma’arof, Azuan Ahmad, Ahmad Shakir Mohd Saudi, Mohd Hanafi Ali, Anvar Narzullaev and Mohd Ifwat Mohd Ghazali, “Image Detection Model for Construction Worker Safety Conditions using Faster R-CNN” International Journal of Advanced Computer Science and Applications(IJACSA), 11(6), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110632

@article{Saudi2020,
title = {Image Detection Model for Construction Worker Safety Conditions using Faster R-CNN},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110632},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110632},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {6},
author = {Madihah Mohd Saudi and Aiman Hakim Ma’arof and Azuan Ahmad and Ahmad Shakir Mohd Saudi and Mohd Hanafi Ali and Anvar Narzullaev and Mohd Ifwat Mohd Ghazali}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org