The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110644
PDF

Data Fusion-Link Prediction for Evolutionary Network with Deep Reinforcement Learning

Author 1: Marcus Lim
Author 2: Azween Abdullah
Author 3: NZ Jhanjhi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 6, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The sophistication of covert activities employed by criminal networks with technology has been proven to be very challenging for criminal enforcement fraternity to cripple their activities. In view of this, law enforcement agencies need to be equipped with criminal network analysis (CNA) technology which can provide advanced and comprehensive intelligence to uncover the primary members (nodes) and associations (links) within the network. The design of tools to predict links between members mainly rely on Social Network Analysis (SNA) models and machine learning (ML) techniques to improve the precision of the model. The primary challenge of constructing classical ML models such as random forest (RF) with an acceptable level of accuracy is to obtain a large enough dataset to train the model. Obtaining a large enough dataset in the domain of criminal networks is a significant problem due to the stealthy and covert nature of their activities compared to social networks. The main objective of this research is to demonstrate that a link prediction model constructed with a relatively small dataset and dataset generated through self-simulation by leveraging on deep reinforcement learning (DRL) can contribute towards higher precision in predicting links. The training of the model was further fused with metadata (i.e. environment attributes such as criminal records, education level, age and police station proximity) in order to capture the real-life attributes of organised crimes which is expected to improve the performance of the model. Therefore, to validate the results, a baseline model designed without incorporating metadata (CNA-DRL) was compared with a model incorporating metadata (MCNA-DRL).

Keywords: Metadata; time-series network; social network analysis; criminal network; deep reinforcement learning

Marcus Lim, Azween Abdullah and NZ Jhanjhi, “Data Fusion-Link Prediction for Evolutionary Network with Deep Reinforcement Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 11(6), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110644

@article{Lim2020,
title = {Data Fusion-Link Prediction for Evolutionary Network with Deep Reinforcement Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110644},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110644},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {6},
author = {Marcus Lim and Azween Abdullah and NZ Jhanjhi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org