The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A Framework for Semantic Text Clustering

Author 1: Soukaina Fatimi
Author 2: Chama EL Saili
Author 3: Larbi Alaoui

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110657

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 6, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Existing approaches for text clustering are either agglomerative, divisive or based on frequent itemsets. However, most of the suggested solutions do not take the semantic associations between words into account and documents are only regarded as bags of unrelated words. Indeed, traditional text clustering methods usually focus on the frequency of terms in documents to create connected homogenous clusters without considering associated semantic which will of course lead to inaccurate clustering results. Accordingly, this research aims to understand the meanings of text phrases in the process of clustering to make maximum usage and use of documents. The semantic web framework is filled with useful techniques enabling database use to be substantial. The goal is to exploit these techniques to the full usage of the Resource Description Framework (RDF) to represent textual data as triplets. To come up a more effective clustering method, we provide a semantic representation of the data in texts on which the clustering process would be based. On the other hand, this study opts to implement other techniques within the clustering process such as ontology representation to manipulate and extract meaningful information using RDF, RDF Schemas (RDFS), and Web Ontology Language (OWL). Since Text clustering is an indispensable task for better exploitation of documents, the use of documents may be more intelligently conducted while considering semantics in the process of text clustering to efficiently identify the more related groups in a document collection. To this end, the proposed framework combines multiple techniques to come up with an efficient approach combining machine learning tools with semantic web principles. The framework allows documents RDF representation, clustering, topic modeling, clusters summarizing, information retrieval based on RDF querying and Reasoning tools. It also highlights the advantages of using semantic web techniques in clustering, subject modeling and knowledge extraction based on processes of questioning, reasoning and inferencing.

Keywords: Text clustering; similarity measure; ontology; semantic web; RDF; RDFS; OWL; reasoning; inferencing rules; SPARQL; topic modeling; summarization

Soukaina Fatimi, Chama EL Saili and Larbi Alaoui, “A Framework for Semantic Text Clustering” International Journal of Advanced Computer Science and Applications(IJACSA), 11(6), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110657

@article{Fatimi2020,
title = {A Framework for Semantic Text Clustering},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110657},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110657},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {6},
author = {Soukaina Fatimi and Chama EL Saili and Larbi Alaoui}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org