The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110657
PDF

A Framework for Semantic Text Clustering

Author 1: Soukaina Fatimi
Author 2: Chama EL Saili
Author 3: Larbi Alaoui

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 6, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Existing approaches for text clustering are either agglomerative, divisive or based on frequent itemsets. However, most of the suggested solutions do not take the semantic associations between words into account and documents are only regarded as bags of unrelated words. Indeed, traditional text clustering methods usually focus on the frequency of terms in documents to create connected homogenous clusters without considering associated semantic which will of course lead to inaccurate clustering results. Accordingly, this research aims to understand the meanings of text phrases in the process of clustering to make maximum usage and use of documents. The semantic web framework is filled with useful techniques enabling database use to be substantial. The goal is to exploit these techniques to the full usage of the Resource Description Framework (RDF) to represent textual data as triplets. To come up a more effective clustering method, we provide a semantic representation of the data in texts on which the clustering process would be based. On the other hand, this study opts to implement other techniques within the clustering process such as ontology representation to manipulate and extract meaningful information using RDF, RDF Schemas (RDFS), and Web Ontology Language (OWL). Since Text clustering is an indispensable task for better exploitation of documents, the use of documents may be more intelligently conducted while considering semantics in the process of text clustering to efficiently identify the more related groups in a document collection. To this end, the proposed framework combines multiple techniques to come up with an efficient approach combining machine learning tools with semantic web principles. The framework allows documents RDF representation, clustering, topic modeling, clusters summarizing, information retrieval based on RDF querying and Reasoning tools. It also highlights the advantages of using semantic web techniques in clustering, subject modeling and knowledge extraction based on processes of questioning, reasoning and inferencing.

Keywords: Text clustering; similarity measure; ontology; semantic web; RDF; RDFS; OWL; reasoning; inferencing rules; SPARQL; topic modeling; summarization

Soukaina Fatimi, Chama EL Saili and Larbi Alaoui, “A Framework for Semantic Text Clustering” International Journal of Advanced Computer Science and Applications(IJACSA), 11(6), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110657

@article{Fatimi2020,
title = {A Framework for Semantic Text Clustering},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110657},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110657},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {6},
author = {Soukaina Fatimi and Chama EL Saili and Larbi Alaoui}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org