The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110660
PDF

A Comparison of Data Sampling Techniques for Credit Card Fraud Detection

Author 1: Abdulla Muaz
Author 2: Manoj Jayabalan
Author 3: Vinesh Thiruchelvam

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 6, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Credit Card fraud is a tough reality that continues to constrain the financial sector and its detrimental effects are felt across the entire financial market. Criminals are continuously on the lookout for ingenious methods for such fraudulent activities and are a real threat to security. Therefore, there is a need for early detection of fraudulent activity to preserve customer trust and safeguard their business. A major challenge faced in designing fraud detection systems is dealing with the class imbalance issue in the data since genuine transactions outnumber the fraudulent transactions typically account less than 1% of the total transactions. This is an important area of study as the positive case (fraudulent case) is hard to distinguish and becomes even harder with the inflow of data where the representation of such cases even decreases further. This study trained four predictive models, Artificial Neural Network (ANN), Gradient Boosting Machine (GBM) and Random Forest (RF) on different sampling methods. Random Under Sampling (RUS), Synthetic Minority Over-sampling Technique (SMOTE), Density-Based Synthetic Minority Over-Sampling Technique (DBSMOTE) and SMOTE combined with Edited Nearest Neighbour (SMOTEENN) was used for all models. The findings of this study indicate promising results with SMOTE based sampling techniques. The best recall score obtained was with SMOTE sampling strategy by DRF classifier at 0.81. The precision score for this classifier was observed to be 0.86. Stacked Ensemble was trained for all the sampled datasets and found to have the best average performance at 0.78. The Stacked Ensemble model has shown promise in the detection of fraudulent transactions across most of the sampling strategies.

Keywords: Data imbalance; credit card fraud; sampling techniques

Abdulla Muaz, Manoj Jayabalan and Vinesh Thiruchelvam, “A Comparison of Data Sampling Techniques for Credit Card Fraud Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 11(6), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110660

@article{Muaz2020,
title = {A Comparison of Data Sampling Techniques for Credit Card Fraud Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110660},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110660},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {6},
author = {Abdulla Muaz and Manoj Jayabalan and Vinesh Thiruchelvam}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org