The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

An Efficient Classifier using Machine Learning Technique for Individual Action Identification

Author 1: G. L. Sravanthi
Author 2: M.Vasumathi Devi
Author 3: K.Satya Sandeep
Author 4: A.Naresh
Author 5: A.Peda Gopi

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110664

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 6, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human action recognition is an important branch of computer vision and is getting increasing attention from researchers. It has been applied in many areas including surveillance, healthcare, sports and computer games. This proposed work focuses on designing a human action recognition system for a human interaction dataset. Literature research is conducted to determine suitable algorithms for action recognition. In this proposed work, three machine learning models are implemented as the classifiers for human actions. An image processing method and a projection-based feature extraction algorithm are presented to generate training examples for the classifier. The action recognition task is divided into two parts: 4-class human posture recognition and 5-class human motion recognition. Classifiers are trained to classify input data into one of the posture or motion classes. Performance evaluations of the classifiers are carried out to assess validation accuracy and test accuracy for action recognition. The architecture designs for the centralized and distributed recognition systems are presented. Later these designed architectures are simulated on the sensor network to evaluate feasibility and recognition performance. Overall, the designed classifiers show a promising performance for action recognition.

Keywords: Human action recognition; machine learning; neural networks

G. L. Sravanthi, M.Vasumathi Devi, K.Satya Sandeep, A.Naresh and A.Peda Gopi, “An Efficient Classifier using Machine Learning Technique for Individual Action Identification” International Journal of Advanced Computer Science and Applications(IJACSA), 11(6), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110664

@article{Sravanthi2020,
title = {An Efficient Classifier using Machine Learning Technique for Individual Action Identification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110664},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110664},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {6},
author = {G. L. Sravanthi and M.Vasumathi Devi and K.Satya Sandeep and A.Naresh and A.Peda Gopi}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org