The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110752
PDF

A Hybrid Recommender System to Enrollment for Elective Subjects in Engineering Students using Classification Algorithms

Author 1: Jerson Erick Herrera Rivera

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 7, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: One of the main problems that engineering university students face is making the correct decision regarding the lines of elective subjects to enroll based on available information (preferences, syllabus, schedules, subject content, possible academic performance, teacher, curriculum, and others). Under these circumstances, this research work seeks to develop a Hybrid Recommender System. For this, a model based on the Content-based approach of all the subjects that has been studied is developed (using Natural Language Processing and the statistical measures Term Frequency and Inverse Term Frequency), giving it appropriate relevance with the grades that the student has achieved. In addition, a model based on a Collaborative Filtering approach is developed, establishing relationships between different students, identifying similar academic behaviors. Thus, the system will recommend to the student in which lines of elective subjects to enroll to obtain better results in the academic field. The given recommendation will be obtained from machine learning models (XGBoost and k-NN) based on the similarity between the contents of each subject with respect to the line of elective subject and based on the academic relationship between all the students. To achieve the objective, data from engineering students between 2011 and 2016 has been analyzed. The results obtained indicate that the recommendations reach a MAP-k of 82.14% and a precision of 91.83%.

Keywords: Hybrid; recommender system; academic performance; term frequency; inverse term frequency; natural language processing; k-NN; XGBoost; MAP-k

Jerson Erick Herrera Rivera, “A Hybrid Recommender System to Enrollment for Elective Subjects in Engineering Students using Classification Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 11(7), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110752

@article{Rivera2020,
title = {A Hybrid Recommender System to Enrollment for Elective Subjects in Engineering Students using Classification Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110752},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110752},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {7},
author = {Jerson Erick Herrera Rivera}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org