The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Stage Identification and Classification of Lung Cancer using Deep Convolutional Neural Network

Author 1: Varsha Prakash
Author 2: Smitha Vas.P

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110769

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 7, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The performance of lung segmentation is highly dependent on disease prediction task. Challenges for prediction and segmentation raise the need of using multiple learning techniques. Current models initially perform image segmentation in all CT scan images and then classify it as malicious or benign. This consumes more time since it segments both normal and abnormal CT’s. So, due to improper segmentation of images the region of interest will be inaccurate and results in false classification of images. Therefore, by initially checking the CT which has malignancy and then segmenting those lesions will provide more accuracy in segmentation of cancerous nodules thereby helps to identify the stage of cancer the patient is suffering from. The aim is to improve the current cancer detection techniques using DCNN by filtering out malignant CT scan from the medical dataset and segmenting those images for stage identification. Segmentation is done using UNET++ architecture and stage identification is done by considering the “size” (T) parameter from the globally recognized standard named “TNM staging” for classifying the spread of each malignant nodule as T1-T4. 99.83 % accuracy is achieved in lung cancer classification using VGG-16 which yields better results for both segmentation and stage identification too.

Keywords: Computer Aided Diagnosis (CAD); Deep Convolutional Neural Network (DCNN); pulmonary nodule; segmentation; benign; malignant; staging

Varsha Prakash and Smitha Vas.P, “Stage Identification and Classification of Lung Cancer using Deep Convolutional Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 11(7), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110769

@article{Prakash2020,
title = {Stage Identification and Classification of Lung Cancer using Deep Convolutional Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110769},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110769},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {7},
author = {Varsha Prakash and Smitha Vas.P}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org