The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A Multi-Class Neural Network Model for Rapid Detection of IoT Botnet Attacks

Author 1: Haifaa Alzahrani
Author 2: Maysoon Abulkhair
Author 3: Entisar Alkayal

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110783

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 7, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The tremendous number of Internet of Things (IoT) devices and their widespread use have made our lives considerably more manageable and safer. At the same time, however, the vulnerability of these innovations means that our day-to-day existence is surrounded by insecure devices, thereby facilitating ways for cybercriminals to launch various attacks by large-scale robot networks (botnets) through IoT. In consideration of these issues, we propose a neural network-based model to detect IoT botnet attacks. Furthermore, the model provides multi-classification, which is necessary for taking appropriate countermeasures to understand and stop the attacks. In addition, it is independent and does not require specific equipment or software to fetch the required features. According to the con-ducted experiments, the proposed model is accurate and achieves 99.99%, 99.04% as F1 score for two benchmark datasets in addition to fulfilling IoT constraints regarding complexity and speed. It is less complicated in terms of computations, and it provides real-time detection that outperformed the state-of-the-art, achieving a detection time ratio of 1:5 and a ratio of 1:8.

Keywords: Internet of Things (IoT); IoT botnets; IoT security; intrusion detection system; deep learning; neural network

Haifaa Alzahrani, Maysoon Abulkhair and Entisar Alkayal, “A Multi-Class Neural Network Model for Rapid Detection of IoT Botnet Attacks” International Journal of Advanced Computer Science and Applications(IJACSA), 11(7), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110783

@article{Alzahrani2020,
title = {A Multi-Class Neural Network Model for Rapid Detection of IoT Botnet Attacks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110783},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110783},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {7},
author = {Haifaa Alzahrani and Maysoon Abulkhair and Entisar Alkayal}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org