The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110810
PDF

Local Binary Pattern Method (LBP) and Principal Component Analysis (PCA) for Periocular Recognition

Author 1: Sereen Alkhazali
Author 2: Mohammad El-Bashir

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 8, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Identification of identity through eye is gaining more and more importance. Commonly, the researchers approach the eye from any of three parts, the iris, the circumference around the eye, and the iris and its circumference. This study follows a holistic approach to identity identification by using the iris and whole periocular area and proposes a periocular recognition system (PRS) that has been developed using the Local Binary Pattern (LBP) technique combined with Principal Component Analysis (PCA) at the feature extraction stage and the k-nearest neighbors (k-NN) algorithm as a classifier at the classification stage. This system achieves identity recognition through three steps: pre-processing, feature extraction, and classification. Pre-processing is applied to the images so as to convert them to grayscale. In the feature extraction step, the LBP method is applied to extract the texture feature from the images and use it in PCA to reduce data dimensionality and obtain the relevant data so that only the important features are extracted. These two steps are applied both in the training phase and the testing phase of image processing. On the other hand, the testing data sets are processed using the k-NN classifier. The proposed PRS was tested on data drawn from the PolyU database using more than one basis of system experience. Specifically, the system performance was tested once on all 209 subjects present in the database and once on 140 subjects. This database also contains images taken in the visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation (EMR) spectrum. So, the system was tested on images taken in both regions separately for matching. As well, the proposed PRS benefited from the availability of images for the right and left perioculars. Performance was, therefore, tested on images of each side of the periocular area (the left and right sides) separately, as well as for the combination of the two sides. The identity recognition rates characteristic of the proposed PRS were most often higher than the recognition rates produced by systems reported in the literature. The highest recognition accuracy obtained from the proposed system, which is 98.21%, was associated with the 140-subject data sub-set.

Keywords: Periocular recognition; Local Binary Pattern (LBP); Principal Component Analysis (PCA); k-Nearest Neighbors (k-NN)

Sereen Alkhazali and Mohammad El-Bashir, “Local Binary Pattern Method (LBP) and Principal Component Analysis (PCA) for Periocular Recognition” International Journal of Advanced Computer Science and Applications(IJACSA), 11(8), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110810

@article{Alkhazali2020,
title = {Local Binary Pattern Method (LBP) and Principal Component Analysis (PCA) for Periocular Recognition},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110810},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110810},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {8},
author = {Sereen Alkhazali and Mohammad El-Bashir}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org