The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110842
PDF

Detecting Health-Related Rumors on Twitter using Machine Learning Methods

Author 1: Faisal Saeed
Author 2: Wael M.S. Yafooz
Author 3: Mohammed Al-Sarem
Author 4: Essa Abdullah Hezzam

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 8, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Nowadays, the huge usage of internet leads to tremendous information growth as a result of our daily activities that deal with different sources such as news articles, forums, websites, emails and social media. Social media is a rich source of information that deeply affect users by its useful content. However, there are a lot of rumors in these social media platforms which can cause critical consequences to the people’s lives, especially if it is related to the health-related information. Several studies focused on automatically detecting rumors from social media by applying machine learning and intelligent methods. However, few studies concerned about health-related rumors in Arabic language. Therefore, this paper is dealing with detecting health-related rumors focusing on cancer treatment information that are spread over social media using Arabic language. In addition, it presents the process of creating a dataset that is called Health-Related Rumors Dataset (HRRD) which will be available and beneficial for further studies in health-related research. Furthermore, an experiment has been conducted to investigate the performance of several machine learning methods to detect the health-related rumors on social media for Arabic language. The experimental results showed the rumors can be detected with an accuracy of 83.50%.

Keywords: Health-related misinformation; cancer disease; fake information; Twitter; classification formatting

Faisal Saeed, Wael M.S. Yafooz, Mohammed Al-Sarem and Essa Abdullah Hezzam, “Detecting Health-Related Rumors on Twitter using Machine Learning Methods” International Journal of Advanced Computer Science and Applications(IJACSA), 11(8), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110842

@article{Saeed2020,
title = {Detecting Health-Related Rumors on Twitter using Machine Learning Methods},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110842},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110842},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {8},
author = {Faisal Saeed and Wael M.S. Yafooz and Mohammed Al-Sarem and Essa Abdullah Hezzam}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org