The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110861
PDF

Automatic Hate Speech Detection using Machine Learning: A Comparative Study

Author 1: Sindhu Abro
Author 2: Sarang Shaikh
Author 3: Zahid Hussain Khand
Author 4: Zafar Ali
Author 5: Sajid Khan
Author 6: Ghulam Mujtaba

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 8, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The increasing use of social media and information sharing has given major benefits to humanity. However, this has also given rise to a variety of challenges including the spreading and sharing of hate speech messages. Thus, to solve this emerging issue in social media sites, recent studies employed a variety of feature engineering techniques and machine learning algorithms to automatically detect the hate speech messages on different datasets. However, to the best of our knowledge, there is no study to compare the variety of feature engineering techniques and machine learning algorithms to evaluate which feature engineering technique and machine learning algorithm outperform on a standard publicly available dataset. Hence, the aim of this paper is to compare the performance of three feature engineering techniques and eight machine learning algorithms to evaluate their performance on a publicly available dataset having three distinct classes. The experimental results showed that the bigram features when used with the support vector machine algorithm best performed with 79% off overall accuracy. Our study holds practical implication and can be used as a baseline study in the area of detecting automatic hate speech messages. Moreover, the output of different comparisons will be used as state-of-art techniques to compare future researches for existing automated text classification techniques.

Keywords: Hate speech; online social networks; natural language processing; text classification; machine learning

Sindhu Abro, Sarang Shaikh, Zahid Hussain Khand, Zafar Ali, Sajid Khan and Ghulam Mujtaba, “Automatic Hate Speech Detection using Machine Learning: A Comparative Study” International Journal of Advanced Computer Science and Applications(IJACSA), 11(8), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110861

@article{Abro2020,
title = {Automatic Hate Speech Detection using Machine Learning: A Comparative Study},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110861},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110861},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {8},
author = {Sindhu Abro and Sarang Shaikh and Zahid Hussain Khand and Zafar Ali and Sajid Khan and Ghulam Mujtaba}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org