The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110877
PDF

Feature Expansion using Lexical Ontology for Opinion Type Detection in Tourism Reviews Domain

Author 1: Lim Jie Chen
Author 2: Gan Keng Hoon

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 8, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Tourism reviews platform such as Trip Advisor become a major source for tourists to share their experiences and get some ideas for decision making. Since there are millions of reviews generated daily in the travel websites, tourist is often overwhelmed with huge information. This is where opinion type detection is important as it makes it easy for a tourist to obtain useful reviews for their understanding and planning processes based on the reviews’ opinion type. The opinion type of texts in travel mostly involves different aspects of opinion related to the travel process, such as transportation, accommodation, price, food, entertainment, and so on. The challenge of this research is to improve this detection by proposing the lexical ontology approach to address the issue of out-of-vocabulary (OOV) keywords during a supervised detection of opinion type. Besides, there are also issues where the training data for detection has poor coverage or limited in a certain domain. In this paper, we propose a review opinion type detection approach by integrating the word (feature) expansion approach in machine learning. The suggested approach consists of two stages namely feature expansion and classification. For feature expansion, Lexical Ontology (LO) is used to expand the feature-related word to the domains such as synonyms. For classification, the expanded feature is corporate to the Machine Learning approach to detect the opinion type.

Keywords: Tourism domain; online review; opinion type detection; text classification; lexical ontology

Lim Jie Chen and Gan Keng Hoon, “Feature Expansion using Lexical Ontology for Opinion Type Detection in Tourism Reviews Domain” International Journal of Advanced Computer Science and Applications(IJACSA), 11(8), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110877

@article{Chen2020,
title = {Feature Expansion using Lexical Ontology for Opinion Type Detection in Tourism Reviews Domain},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110877},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110877},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {8},
author = {Lim Jie Chen and Gan Keng Hoon}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org