The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110893
PDF

Date Grading using Machine Learning Techniques on a Novel Dataset

Author 1: Hafsa Raissouli
Author 2: Abrar Ali Aljabri
Author 3: Sarah Mohammed Aljudaibi
Author 4: Fazilah Haron
Author 5: Ghada Alharbi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 8, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Dates grading is a crucial stage in the dates’ facto-ries. However, it is done manually in most of the Middle Eastern industries. This study, using a novel dataset, identifies the suitable machine learning techniques to grade dates based on the image of the date. The dataset consists of three different types of dates, namely, Ajwah, Mabroom, and Sukkary with each having three different grades. The dates were obtained from Manafez company and graded by their experts. The color, size and texture of the dates are the features that have been considered in this work. To determine the color, we have used color properties in RGB (red, green, and blue) color space. For measuring the size, we applied the best least-square fitting ellipse. To analyze the texture, we used Weber local descriptor to distinguish between texture patterns. In order to identify the suitable grading classifier, we have experimented three approaches, namely, k-nearest neighbor (KNN), support vector machine (SVM) and convolutional neural network (CNN). Our experiments have shown that CNN is the best classifier with an accuracy of 98% for Ajwah, 99% for Mabroom, and 99% for Sukkary. Hence, the CNN classifier has been incorporated in our date grading system

Keywords: Date grading; machine learning; k-nearest neigh-bor; support vector machine; convolutional neural network

Hafsa Raissouli, Abrar Ali Aljabri, Sarah Mohammed Aljudaibi, Fazilah Haron and Ghada Alharbi, “Date Grading using Machine Learning Techniques on a Novel Dataset” International Journal of Advanced Computer Science and Applications(IJACSA), 11(8), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110893

@article{Raissouli2020,
title = {Date Grading using Machine Learning Techniques on a Novel Dataset},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110893},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110893},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {8},
author = {Hafsa Raissouli and Abrar Ali Aljabri and Sarah Mohammed Aljudaibi and Fazilah Haron and Ghada Alharbi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org