The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110919
PDF

A Clustering Hybrid Algorithm for Smart Datasets using Machine Learning

Author 1: Dar Masroof Amin
Author 2: Munishwar Rai

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the field of data science, Machine Learning is treated as sub-field which primarily deals with designing of algorithms which have ability to learn from previous information and make future predictions accordingly. In traditional computational world the Machine Learning was generally performed on highly performance servers and machines. The implementation of these concepts on Big Data analytics algorithms has high potential and is still in its early stages. So far as machine learning is concerned, performance measure is an important parameter to evaluate the overall functionality of the algorithms. The data set is a different entity and the measuring of performance on a data which is unseen is also called as test set, and training set is a Data set which is training itself. The Data Mining is extensively using learning algorithms for data analysis and to formulate future predications based on archived data. The research presented provides a step forward to make smart data sets out of training data set by evaluating machine learning algorithm. The research presented a novel hybrid algorithm that attempts to incorporate the feature of similarities in Random Forest machine learning algorithm for improving the classification accuracy and efficiency of working.

Keywords: Random Forests (RF); Jaccard Similarity (JS); triangle; smart data; root mean square error; mean absolute error; machine learning

Dar Masroof Amin and Munishwar Rai, “A Clustering Hybrid Algorithm for Smart Datasets using Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110919

@article{Amin2020,
title = {A Clustering Hybrid Algorithm for Smart Datasets using Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110919},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110919},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Dar Masroof Amin and Munishwar Rai}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org