The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110920
PDF

Grid Search Tuning of Hyperparameters in Random Forest Classifier for Customer Feedback Sentiment Prediction

Author 1: Siji George C G
Author 2: B.Sumathi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Text classification is a common task in machine learning. One of the supervised classification algorithm called Random Forest has been generally used for this task. There is a group of parameters in Random Forest classifier which need to be tuned. If proper tuning is performed on these hyperparameters, the classifier will give a better result. This paper proposes a hybrid approach of Random Forest classifier and Grid Search method for customer feedback data analysis. The tuning approach of Grid Search is applied for tuning the hyperparameters of Random Forest classifier. The Random Forest classifier is used for customer feedback data analysis and then the result is compared with the results which get after applying Grid Search method. The proposed approach provided a promising result in customer feedback data analysis. The experiments in this work show that the accuracy of the proposed model to predict the sentiment on customer feedback data is greater than the performance accuracy obtained by the model without applying parameter tuning.

Keywords: Classification; grid search; hyperparameters; parameter tuning; random forest classifier; sentiment analysis

Siji George C G and B.Sumathi, “Grid Search Tuning of Hyperparameters in Random Forest Classifier for Customer Feedback Sentiment Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110920

@article{G2020,
title = {Grid Search Tuning of Hyperparameters in Random Forest Classifier for Customer Feedback Sentiment Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110920},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110920},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Siji George C G and B.Sumathi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org