The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110921
PDF

Aspect-Based Sentiment Analysis and Emotion Detection for Code-Mixed Review

Author 1: Andi Suciati
Author 2: Indra Budi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Review can affect customer decision making because by reading it, people manage to know whether the review is positive, or negative. However, positive, negative, and neutral, without considering the emotion will be not enough because emotion can strengthen the sentiment result. This study explains about the comparison of machine learning and deep learning in sentiment as well as emotion classification with multi-label classification. In machine learning comparison, the problem transformation that we used are Binary Relevance (BR), Classifier Chain (CC), and Label Powerset (LP), with Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Extra Tree Classifier (ET) as algorithms of machine learning. The features we compared are n-gram language model (unigram, bigram, unigram-bigram). For deep learning, algorithms that we applied are Gated Recurrent Unit (GRU) and Bidirectional Long Short-Term Memory (BiLSTM), using self-developed word embedding. The comparison results show RF dominates with 88.4% and 89.54% F1 scores with CC method for food aspect, and LP for price, respectively. For service and ambience aspects, ET leads with 92.65% and 87.1% with LP and CC methods, respectively. On the other hand, in deep learning comparison, GRU and BiLSTM obtained similar F1- score for food aspect, 88.16%. On price aspect, GRU leads with 83.01%. However, for service and ambience, BiLSTM achieved higher F1-score, 89.03% and 84.78%.

Keywords: Sentiment analysis; emotion; multi-label classification; machine learning; deep learning

Andi Suciati and Indra Budi, “Aspect-Based Sentiment Analysis and Emotion Detection for Code-Mixed Review” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110921

@article{Suciati2020,
title = {Aspect-Based Sentiment Analysis and Emotion Detection for Code-Mixed Review},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110921},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110921},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Andi Suciati and Indra Budi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org