The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110922
PDF

Pseudo Amino Acid Feature-based Protein Function Prediction using Support Vector Machine and K-Nearest Neighbors

Author 1: Anjna Jayant Deen
Author 2: Manasi Gyanchandani

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Bioinformatics facing the vital challenge in protein function prediction due to protein data are available in primary structure, an amino acid sequence. Every protein cell sequence length and size are in different sequence order. Protein is available in 20 amino acid sequence alphabetic order; however, the corresponding information of the membrane protein sequence is insufficient to capture the function and structures of a protein from primary sequence datasets. A challenging task to correctly identify protein structure and function from amino acid sequence. The basic principle of PseAAC (Pseudo Amino Acid Composition) is to generate a discrete number of every protein samples. In each protein, sequence length varies due to protein functions. Some protein sequence length is less than 50, and some are large. Due to this, different sizes of the amino acid sample are chances to lose sequence order information. PseAAC feature generates a fixed size descriptor value in vector space to overcome sequence information loss and is used to further systematic evolution. Therefore machine learning computational tool synthesizes accurate identification of structure and function class of membrane protein. In this study, SVM (Support Vector Machine) and KNN (K-nearest neighbors) based prediction classifier used to identifying membrane protein and their types.

Keywords: Membrane protein types; classifiers; SVM (RBF); KNN; Random Forest; PseAAC

Anjna Jayant Deen and Manasi Gyanchandani, “Pseudo Amino Acid Feature-based Protein Function Prediction using Support Vector Machine and K-Nearest Neighbors” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110922

@article{Deen2020,
title = {Pseudo Amino Acid Feature-based Protein Function Prediction using Support Vector Machine and K-Nearest Neighbors},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110922},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110922},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Anjna Jayant Deen and Manasi Gyanchandani}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org