The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110940
PDF

Electricity Cost Prediction using Autoregressive Integrated Moving Average (ARIMA) in Korea

Author 1: Safdar Ali
Author 2: Do-Hyeun Kim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electricity cost plays a vital role due to the immense increase in power utilization, rise in energy rates and alarms about the variations and impact on the environment which ultimately affects electricity cost. We claim that electrical power utilization data became more beneficial if it is presented to the customers along with the prediction of power consumption, prediction of energy prices and prediction of its expected electricity cost. It will assist the residents to alter their power utilization behavior, and thus will have an optimistic influence on the electricity production companies, dissemination network and electricity grid. In this study, we present a residential area power cost prediction by applying the Autoregressive Integrated Moving Average (ARIMA) technique in Korean apartments. We have investigated the energy utilization data on the foundation of daily, weekly and monthly power utilization. The accumulated data constructed on daily, weekly and monthly utilization are selected. Then we predict the maximum and average power consumption cost for each of the predicted daily, weekly and monthly power consumption. The power consumption and general price (General Electricity Price in Korea) data of Korea are used to analyze the efficiency of the prediction algorithm. The accuracy of the power cost prediction using the ARIMA model is verified using the absolute error.

Keywords: Electricity price; electricity cost; Autoregressive Integrated Moving Average (ARIMA); prediction; energy consumption

Safdar Ali and Do-Hyeun Kim, “Electricity Cost Prediction using Autoregressive Integrated Moving Average (ARIMA) in Korea” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110940

@article{Ali2020,
title = {Electricity Cost Prediction using Autoregressive Integrated Moving Average (ARIMA) in Korea},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110940},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110940},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Safdar Ali and Do-Hyeun Kim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org