The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110971
PDF

Meta-Analysis of Artificial Intelligence Works in Ubiquitous Learning Environments and Technologies

Author 1: Caitlin Sam
Author 2: Nalindren Naicker
Author 3: Mogiveny Rajkoomar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Ubiquitous learning (u-learning) refers to anytime and anywhere learning. U-learning has progressed to be considered a conventional teaching and learning approach in schools and is adopted to continue with the school curriculum when learners cannot attend schools for face-to-face lessons. Computer Science, namely the field of Artificial Intelligence (AI) presents tools and techniques to support the growth of u-learning and provide recommendations and insights to academic practitioners and AI researchers. Aim: The aim of this study was to conduct a meta-analysis of Artificial Intelligence works in ubiquitous learning environments and technologies to present state from the plethora of research. Method: The mining of related articles was devised according to the technique of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The complement of included research articles was sourced from the broadly used databases, namely, Science Direct, Springer Link, Semantic Scholar, Academia, and IEEE. Results: A total of 16 scientific research publications were shortlisted for this study from 330 articles identified through database searching. Using random-effects model, the estimated pooled estimate of artificial intelligence works in ubiquitous learning environments and technologies reported was 10% (95% CI: 3%, 22%; I2 = 99.46%, P = 0.00) which indicates the presence of considerable heterogeneity. Conclusion: It can be concluded based on the experimental results from the sub group analysis that machine learning studies [18% (95% CI: 11%, 25%), I2 = 99.83%] was considerably more heterogeneous (I2 = 99.83%) than intelligent decision support systems, intelligent systems and educational data mining. However, this does not mean that intelligent decision support systems, intelligent systems and educational data mining is not efficient.

Keywords: Educational data mining; intelligent systems; artificial intelligence; PRISMA; machine learning; ubiquitous learning

Caitlin Sam, Nalindren Naicker and Mogiveny Rajkoomar, “Meta-Analysis of Artificial Intelligence Works in Ubiquitous Learning Environments and Technologies” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110971

@article{Sam2020,
title = {Meta-Analysis of Artificial Intelligence Works in Ubiquitous Learning Environments and Technologies},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110971},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110971},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Caitlin Sam and Nalindren Naicker and Mogiveny Rajkoomar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org