The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110975
PDF

Product Recommendation in Offline Retail Industry by using Collaborative Filtering

Author 1: Bayu Yudha Pratama
Author 2: Indra Budi
Author 3: Arlisa Yuliawati

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The variety of purchased products is important for retailers. When a customer buys a specific product in a large number, the customer might get benefit, such as more discounts. On contrary, this could harm the retailers since only some products are sold quickly. Due to this problem, big retailers try to entice customers to buy many variations of products. For an offline retailer, promoting specific products based on the markets’ taste is quite challenging because of the unavailability of information regarding customers’ preferences. This study utilized four years of purchase transaction data to implicitly find customers’ ratings or feedback towards specific products they have purchased. This study employed two Collaborative Filtering methods in generating product recommendations for customers and find the best method. The result shows that the Memory-based approach (k-NN Algorithm) outperformed the Model-based (SVD Matrix Factorization). Another finding is that the more data training being used, the better the performance of the recommendation system will result. To cope with the data scalability issue, customer segmentation through k-Means Clustering was applied. The result implies that this is not necessary since it failed to boost up the models' accuracy. The result of the recommendation system is then applied in a suggested business process for a specific offline retailer shop.

Keywords: Recommendation system; offline retail store; memory-based collaborative filtering; customer segmentation

Bayu Yudha Pratama, Indra Budi and Arlisa Yuliawati, “Product Recommendation in Offline Retail Industry by using Collaborative Filtering” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110975

@article{Pratama2020,
title = {Product Recommendation in Offline Retail Industry by using Collaborative Filtering},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110975},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110975},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Bayu Yudha Pratama and Indra Budi and Arlisa Yuliawati}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org