The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120118
PDF

Detection and Recognition of Moving Video Objects: Kalman Filtering with Deep Learning

Author 1: Hind Rustum Mohammed
Author 2: Zahir M. Hussain

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 1, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Research in object recognition has lately found that Deep Convolutional Neuronal Networks (CNN) provide a breakthrough in detection scores, especially in video applications. This paper presents an approach for object recognition in videos by combining Kalman filter with CNN. Kalman filter is first applied for detection, removing the background and then cropping object. Kalman filtering achieves three important functions: predicting the future location of the object, reducing noise and interference from incorrect detections, and associating multi-objects to tracks. After detection and cropping the moving object, a CNN model will predict the category of object. The CNN model is built based on more than 1000 image of humans, animals and others, with architecture that consists of ten layers. The first layer, which is the input image, is of 100 * 100 size. The convolutional layer contains 20 masks with a size of 5 * 5, with a ruling layer to normalize data, then max-pooling. The proposed hybrid algorithm has been applied to 8 different videos with total duration of is 15.4 minutes, containing 23100 frames. In this experiment, recognition accuracy reached 100%, where the proposed system outperforms six existing algorithms.

Keywords: Convolution Neural Network (CNN); Kalman filter; moving object; video tracking

Hind Rustum Mohammed and Zahir M. Hussain, “Detection and Recognition of Moving Video Objects: Kalman Filtering with Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 12(1), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120118

@article{Mohammed2021,
title = {Detection and Recognition of Moving Video Objects: Kalman Filtering with Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120118},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120118},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {1},
author = {Hind Rustum Mohammed and Zahir M. Hussain}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org