The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120146
PDF

Classification of Arabic-Speaking Website Pages with Unscrupulous Intentions and Questionable Language

Author 1: Haya Mesfer Alshahrani

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 1, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This study aims to put forward a comprehensive and detailed classification system to categorize different Arabic-speaking website pages with unscrupulous intentions and questionable language. The methodology of this is based on a quantitative approach by using different algorithms (supervised) to build a model for data classification by using manually categorized information. The classification algorithm used to construct the model uses quantitative information extracted by Posit or SAFAR textual analysis framework. This model functions with (58) features combined from Posit – n-grams and morphological SAFAR V2 POS tools. This model achieved more than (94 %) success in the level of precision. The results of this study revealed that the best results reaching 94% precision have been achieved by combining Posit + SAFAR + (18 attributes Posit+ SAFAR N-Gram). Moreover, the most reliable results have been achieved by applying a Random Forest classification algorithm using regression. The research recommends working more on this topic and using new algorithms and techniques.

Keywords: Extremism; textual analysis; classification; Posit; SAFAR

Haya Mesfer Alshahrani, “Classification of Arabic-Speaking Website Pages with Unscrupulous Intentions and Questionable Language” International Journal of Advanced Computer Science and Applications(IJACSA), 12(1), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120146

@article{Alshahrani2021,
title = {Classification of Arabic-Speaking Website Pages with Unscrupulous Intentions and Questionable Language},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120146},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120146},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {1},
author = {Haya Mesfer Alshahrani}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org