The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Development of a Physical Impairment Prediction Model for Korean Elderly People using Synthetic Minority Over-Sampling Technique and XGBoost

Author 1: Haewon Byeon

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0120105

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 1, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The old people's 'physical functioning' is a key factor of active ageing as well as a major factor in determining the quality of life and the need for long-term care in old age. Previous studies that identified factors related to ADL mostly used regression analysis to predict groups of high physical impairment risk. Regression analysis is useful for confirming individual risk factors, but has limitations in grasping multiple risk factors. As methods for resolving this limitation of regression models, machine learning ensemble boosting models such as random forest and eXtreme Gradient Boosting (XGBoost) are widely used. Nonetheless, the prediction performances of XGBoost, such as accuracy and sensitivity, remain to be verified additionally by follow-up studies. This article proposes an effective method of dealing with imbalanced data for the development of ensemble-based machine learning, by comparing the performances of disease data sampling methods. This study analyzed 3,351 old people aged 65 or above who resided in local communities and completed the survey. As machine learning models to predict physical impairment in old age, this study compared the logistic regression model, XGBoost and random forest, with respect to the predictive performances of accuracy, sensitivity, and specificity. This study selected as the final model a model whose sensitivity and specificity were 0.6 or above and whose accuracy was highest. As a result, synthetic minority over-sampling technique (SMOTE)-based XGBoost whose accuracy, sensitivity, and specificity were 0.67, 0.81, and 0.75, respectively, was determined as the most excellent predictive performance. The results of this study suggest that in case of developing a predictive model using imbalanced data like disease data, it is efficient to use the SMOTE-based XGBoost model.

Keywords: Random forest; XGBoost; GBM; gradient boosting machine; physical impairment prediction model

Haewon Byeon, “Development of a Physical Impairment Prediction Model for Korean Elderly People using Synthetic Minority Over-Sampling Technique and XGBoost” International Journal of Advanced Computer Science and Applications(IJACSA), 12(1), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120105

@article{Byeon2021,
title = {Development of a Physical Impairment Prediction Model for Korean Elderly People using Synthetic Minority Over-Sampling Technique and XGBoost},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120105},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120105},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {1},
author = {Haewon Byeon}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org