The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120166
PDF

An Integrated Imbalanced Learning and Deep Neural Network Model for Insider Threat Detection

Author 1: Mohammed Nasser Al-Mhiqani
Author 2: Rabiah Ahmed
Author 3: Z Zainal Abidin
Author 4: S.N Isnin

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 1, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The insider threat is a vital security problem concern in both the private and public sectors. A lot of approaches available for detecting and mitigating insider threats. However, the implementation of an effective system for insider threats detection is still a challenging task. In previous work, the Machine Learning (ML) technique was proposed in the insider threats detection domain since it has a promising solution for a better detection mechanism. Nonetheless, the (ML) techniques could be biased and less accurate when the dataset used is hugely imbalanced. Therefore, in this article, an integrated insider threat detection is named (AD-DNN), which is an integration of adaptive synthetic technique (ADASYN) sampling approach and deep neural network technique (DNN). In the proposed model (AD-DNN), the adaptive synthetic (ADASYN) is used to solve the imbalanced data issue and the deep neural network (DNN) for insider threat detection. The proposed model uses the CERT dataset for the evaluation process. The experimental results show that the proposed integrated model improves the overall detection performance of insider threats. A significant impact on the accuracy performance brings a better solution in the proposed model compared with the current insider threats detection system.

Keywords: Security; insider threat; insider threats detection; machine learning; deep learning; imbalanced data

Mohammed Nasser Al-Mhiqani, Rabiah Ahmed, Z Zainal Abidin and S.N Isnin, “An Integrated Imbalanced Learning and Deep Neural Network Model for Insider Threat Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 12(1), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120166

@article{Al-Mhiqani2021,
title = {An Integrated Imbalanced Learning and Deep Neural Network Model for Insider Threat Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120166},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120166},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {1},
author = {Mohammed Nasser Al-Mhiqani and Rabiah Ahmed and Z Zainal Abidin and S.N Isnin}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org