The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120169
PDF

Fake Reviews Detection using Supervised Machine Learning

Author 1: Ahmed M. Elmogy
Author 2: Usman Tariq
Author 3: Ammar Mohammed
Author 4: Atef Ibrahim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 1, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the continuous evolve of E-commerce systems, online reviews are mainly considered as a crucial factor for building and maintaining a good reputation. Moreover, they have an effective role in the decision making process for end users. Usually, a positive review for a target object attracts more customers and lead to high increase in sales. Nowadays, deceptive or fake reviews are deliberately written to build virtual reputation and attracting potential customers. Thus, identifying fake reviews is a vivid and ongoing research area. Identifying fake reviews depends not only on the key features of the reviews but also on the behaviors of the reviewers. This paper proposes a machine learning approach to identify fake reviews. In addition to the features extraction process of the reviews, this paper applies several features engineering to extract various behaviors of the reviewers. The paper compares the performance of several experiments done on a real Yelp dataset of restaurants reviews with and without features extracted from users behaviors. In both cases, we compare the performance of several classifiers; KNN, Naive Bayes (NB), SVM, Logistic Regression and Random forest. Also, different language models of n-gram in particular bi-gram and tri-gram are taken into considerations during the evaluations. The results reveal that KNN(K=7) outperforms the rest of classifiers in terms of f-score achieving best f-score 82.40%. The results show that the f-score has increased by 3.80%when taking the extracted reviewers behavioral features into consideration.

Keywords: Fake reviews detection; data mining; supervised machine learning; feature engineering

Ahmed M. Elmogy, Usman Tariq, Ammar Mohammed and Atef Ibrahim, “Fake Reviews Detection using Supervised Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 12(1), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120169

@article{Elmogy2021,
title = {Fake Reviews Detection using Supervised Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120169},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120169},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {1},
author = {Ahmed M. Elmogy and Usman Tariq and Ammar Mohammed and Atef Ibrahim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org