The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Predictive Scaling for Elastic Compute Resources on Public Cloud Utilizing Deep Learning based Long Short-term Memory

Author 1: Bharanidharan. G
Author 2: S. Jayalakshmi

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0121010

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 10, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The cloud resource usage has been increased exponentially because of adaptation of digitalization in government and corporate organization. This might increase the usage of cloud compute instances, resulting in massive consumption of energy from High performance Public Cloud Data Center servers. In cloud, there are some web applications which may experience diverse workloads at different timestamps that are essential for workload efficiency as well as feasibility of all extent. In cloud application, one of the major features is scalability in which most Cloud Service Providers (CSP) offer Infrastructure as a Service (IaaS) and have implemented auto-scaling on the Virtual Machine (VM) levels. Auto-scaling is a cloud computing feature which has the ability in scaling the resources based on demand and it assists in providing better results for other features like high availability, fault tolerance, energy efficiency, cost management, etc. In the existing approach, the reactive scaling with fixed or smart static threshold do not fulfill the requirement of application to run without hurdles during peak workloads, however this paper focuses on increasing the green tracing over cloud computing through proposed approach using predictive auto-scaling technique for reducing over-provisioning or under-provisioning of instances with history of traces. On the other hand, it offers right sized instances that fit the application to execute in satisfying the users through on-demand with elasticity. This can be done using Deep Learning based Time-Series LSTM Networks, wherein the virtual CPU core instances can be accurately scaled using cool visualization insights after the model has been trained. Moreover, the LSTM accuracy result of prediction is also compared with Gated Recurrent Unit (GRU) to bring business intelligence through analytics with reduced energy, cost and environmental sustainability.

Keywords: Predictive auto-scaling; business intelligence; virtual machines (VM’s); deep learning models; analytics; elasticity; high performance public cloud data centre (HP-PCDC); right sizing

Bharanidharan. G and S. Jayalakshmi, “Predictive Scaling for Elastic Compute Resources on Public Cloud Utilizing Deep Learning based Long Short-term Memory” International Journal of Advanced Computer Science and Applications(IJACSA), 12(10), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121010

@article{G2021,
title = {Predictive Scaling for Elastic Compute Resources on Public Cloud Utilizing Deep Learning based Long Short-term Memory},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121010},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121010},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {10},
author = {Bharanidharan. G and S. Jayalakshmi}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org