The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121036
PDF

Proactive Virtual Machine Scheduling to Optimize the Energy Consumption of Computational Cloud

Author 1: Shailesh Saxena
Author 2: Mohammad Zubair Khan
Author 3: Ravendra Singh
Author 4: Abdulfattah Noorwali

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 10, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The rapid expansion of communication and computational technology provides us the opportunity to deal with the bulk nature of dynamic data. The classical computing style is not much effective for such mission-critical data analysis and processing. Therefore, cloud computing is become popular for addressing and dealing with data. Cloud computing involves a large computational and network infrastructure that requires a significant amount of power and generates carbon footprints (CO2). In this context, we can minimize the cloud's energy consumption by controlling and switching off ideal machines. Therefore, in this paper, we propose a proactive virtual machine (VM) scheduling technique that can deal with frequent migration of VMs and minimize the energy consumption of the cloud using unsupervised learning techniques. The main objective of the proposed work is to reduce the energy consumption of cloud datacenters through effective utilization of cloud resources by predicting the future demand of resources. In this context four different clustering algorithms, namely K-Means, SOM (Self Organizing Map), FCM (Fuzzy C Means), and K-Mediod are used to develop the proposed proactive VM scheduling and find which type of clustering algorithm is best suitable for reducing the energy uses through proactive VM scheduling. This predictive load-aware VM scheduling technique is evaluated and simulated using the Cloud-Sim simulator. In order to demonstrate the effectiveness of the proposed scheduling technique, the workload trace of 29 days released by Google in 2019 is used. The experimental outcomes are summarized in different performance matrices, such as the energy consumed and the average processing time. Finally, by concluding the efforts made, we also suggest future research directions.

Keywords: Cloud computing; CO2; proactive scheduling; unsupervised learning; clustering; energy; prediction; cloud-sim; performance assessment

Shailesh Saxena, Mohammad Zubair Khan, Ravendra Singh and Abdulfattah Noorwali, “Proactive Virtual Machine Scheduling to Optimize the Energy Consumption of Computational Cloud” International Journal of Advanced Computer Science and Applications(IJACSA), 12(10), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121036

@article{Saxena2021,
title = {Proactive Virtual Machine Scheduling to Optimize the Energy Consumption of Computational Cloud},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121036},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121036},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {10},
author = {Shailesh Saxena and Mohammad Zubair Khan and Ravendra Singh and Abdulfattah Noorwali}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org