The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Improvement of Deep Learning-based Human Detection using Dynamic Thresholding for Intelligent Surveillance System

Author 1: Wahyono
Author 2: Moh. Edi Wibowo
Author 3: Ahmad Ashari
Author 4: Muhammad Pajar Kharisma Putra

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0121053

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 10, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human detection plays an important role in many applications of the intelligent surveillance system (ISS), such as person re-identification, human tracking, people counting, etc. On the other hand, the use of deep learning in human detection has provided excellent accuracy. Unfortunately, the deep-learning method is sometimes unable to detect objects that are too far from the camera. It is because the threshold selection for confidence value is statically determined at the decision stage. This paper proposes a new strategy for using dynamic thresholding based on geometry in the images. The proposed method is evaluated using the dataset we created. The experiment found that the use of dynamic thresholding provides an increase in F-measure of 0.11 while reducing false positives by 0.18. This shows that the proposed strategy effectively detects human objects, which is applied to the ISS.

Keywords: Human detection; YOLO; dynamic thresholding; intelligent surveillance system

Wahyono , Moh. Edi Wibowo, Ahmad Ashari and Muhammad Pajar Kharisma Putra, “Improvement of Deep Learning-based Human Detection using Dynamic Thresholding for Intelligent Surveillance System” International Journal of Advanced Computer Science and Applications(IJACSA), 12(10), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121053

@article{2021,
title = {Improvement of Deep Learning-based Human Detection using Dynamic Thresholding for Intelligent Surveillance System},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121053},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121053},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {10},
author = {Wahyono and Moh. Edi Wibowo and Ahmad Ashari and Muhammad Pajar Kharisma Putra}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org