The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121053
PDF

Improvement of Deep Learning-based Human Detection using Dynamic Thresholding for Intelligent Surveillance System

Author 1: Wahyono
Author 2: Moh. Edi Wibowo
Author 3: Ahmad Ashari
Author 4: Muhammad Pajar Kharisma Putra

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 10, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human detection plays an important role in many applications of the intelligent surveillance system (ISS), such as person re-identification, human tracking, people counting, etc. On the other hand, the use of deep learning in human detection has provided excellent accuracy. Unfortunately, the deep-learning method is sometimes unable to detect objects that are too far from the camera. It is because the threshold selection for confidence value is statically determined at the decision stage. This paper proposes a new strategy for using dynamic thresholding based on geometry in the images. The proposed method is evaluated using the dataset we created. The experiment found that the use of dynamic thresholding provides an increase in F-measure of 0.11 while reducing false positives by 0.18. This shows that the proposed strategy effectively detects human objects, which is applied to the ISS.

Keywords: Human detection; YOLO; dynamic thresholding; intelligent surveillance system

Wahyono , Moh. Edi Wibowo, Ahmad Ashari and Muhammad Pajar Kharisma Putra, “Improvement of Deep Learning-based Human Detection using Dynamic Thresholding for Intelligent Surveillance System” International Journal of Advanced Computer Science and Applications(IJACSA), 12(10), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121053

@article{2021,
title = {Improvement of Deep Learning-based Human Detection using Dynamic Thresholding for Intelligent Surveillance System},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121053},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121053},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {10},
author = {Wahyono and Moh. Edi Wibowo and Ahmad Ashari and Muhammad Pajar Kharisma Putra}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org