The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Learning Pick to Place Objects using Self-supervised Learning with Minimal Training Resources

Author 1: Marwan Qaid Mohammed
Author 2: Lee Chung Kwek
Author 3: Shing Chyi Chua

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0121056

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 10, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Grasping objects is a critical but challenging aspect of robotic manipulation. Recent studies have concentrated on complex architectures and large, well-labeled data sets that need extensive computing resources and time to achieve generalization capability. This paper proposes an effective grasp-to-place strategy for manipulating objects in sparse and chaotic environments. A deep Q-network, a model-free deep reinforcement learning method for robotic grasping, is employed in this paper. The proposed approach is remarkable in that it executes both fundamental object pickup and placement actions by utilizing raw RGB-D images through an explicit architecture. Therefore, it needs fewer computing processes, takes less time to complete simulation training, and generalizes effectively across different object types and scenarios. Our approach learns the policies to experience the optimal grasp point via trial-and-error. The fully conventional network is utilized to map the visual input into pixel-wise Q-value, a motion agnostic representation that reflects the grasp's orientation and pose. In a simulation experiment, a UR5 robotic arm equipped with a Parallel-jaw gripper is used to assess the proposed approach by demonstrating its effectiveness. The experimental outcomes indicate that our approach successfully grasps objects with consuming minimal time and computer resources.

Keywords: Self-supervised; pick-to-place; robotics; deep q-network

Marwan Qaid Mohammed, Lee Chung Kwek and Shing Chyi Chua, “Learning Pick to Place Objects using Self-supervised Learning with Minimal Training Resources” International Journal of Advanced Computer Science and Applications(IJACSA), 12(10), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121056

@article{Mohammed2021,
title = {Learning Pick to Place Objects using Self-supervised Learning with Minimal Training Resources},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121056},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121056},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {10},
author = {Marwan Qaid Mohammed and Lee Chung Kwek and Shing Chyi Chua}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org