The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121058
PDF

SMAD: Text Classification of Arabic Social Media Dataset for News Sources

Author 1: Amira M. Gaber
Author 2: Mohamed Nour El-din
Author 3: Hanan Moussa

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 10, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Due to the advances in technology, social media has become the most popular means for the propagation of news. Many news items are published on social media like Facebook, Twitter, Instagram, etc. but are not categorized into various different domains, such as politics, education, finance, art, sports, and health. Thus, text classification is needed to classify the news into different domains to reduce the huge amount of news available over social media, reduce time and effort for recognizing the category or domain, and present data to improve the searching process. Most existing datasets don’t follow pre-processing and filtering processes and aren’t organized based on classification standards to be ready for use. Thus, the Arabic Natural Processing Language (ANLP) phases will be used to pre-process, normalize, and categorize the news into the right domain. This paper proposes an Arabic Social Media Dataset (SMAD) for text classification purposes over the social media using ANLP steps. The SMAD dataset consists of 15,240 Arabic news items categorized over the Facebook social network. The experimental results illustrate that the SMAD corpus gives accuracy of about 98% in five domains (Art, Education, Health, Politics, and Sport). The SMAD dataset has been trained tested and is ready for use.

Keywords: Text classification; Arabic text classification; Arabic Natural Language Processing (ANLP)

Amira M. Gaber, Mohamed Nour El-din and Hanan Moussa, “SMAD: Text Classification of Arabic Social Media Dataset for News Sources” International Journal of Advanced Computer Science and Applications(IJACSA), 12(10), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121058

@article{Gaber2021,
title = {SMAD: Text Classification of Arabic Social Media Dataset for News Sources},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121058},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121058},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {10},
author = {Amira M. Gaber and Mohamed Nour El-din and Hanan Moussa}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org