The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Skin Lesions Classification and Segmentation: A Review

Author 1: Marzuraikah Mohd Stofa
Author 2: Mohd Asyraf Zulkifley
Author 3: Muhammad Ammirrul Atiqi Mohd Zainuri

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0121060

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 10, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: An automated intelligent system based on imaging input for unbiased diagnosis of skin-related diseases is an essential screening tool nowadays. This is because visual and manual analysis of skin lesion conditions based on images is a time-consuming process that puts a significant workload on health practitioners. Various machine learning and deep learning techniques have been researched to reduce and alleviate the workloads. In several early studies, the standard machine learning techniques are the more popular approach, which is in contrast to the recent studies that rely more on the deep learning approach. Although the recent deep learning approach, mainly based on convolutional neural networks has shown impressive results, some challenges remain open due to the complexity of the skin lesions. This paper presents a wide range of analyses that cover classification and segmentation phases of skin lesion detection using deep learning techniques. The review starts with the classification techniques used for skin lesion detection, followed by a concise review on lesions segmentation, also using the deep learning techniques. Finally, this paper examined and analyzed the performances of state-of-the-art methods that have been evaluated on various skin lesion datasets. This paper has utilized performance measures based on accuracy, mean specificity, mean sensitivity, and area under the curve of 12 different Convolutional Neural Network based classification models.

Keywords: Lesion segmentation; lesion classification; machine learning; deep learning; skin lesions

Marzuraikah Mohd Stofa, Mohd Asyraf Zulkifley and Muhammad Ammirrul Atiqi Mohd Zainuri, “Skin Lesions Classification and Segmentation: A Review” International Journal of Advanced Computer Science and Applications(IJACSA), 12(10), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121060

@article{Stofa2021,
title = {Skin Lesions Classification and Segmentation: A Review},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121060},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121060},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {10},
author = {Marzuraikah Mohd Stofa and Mohd Asyraf Zulkifley and Muhammad Ammirrul Atiqi Mohd Zainuri}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2022

3-4 March 2022

  • Virtual

Computing Conference 2022

14-15 July 2022

  • Hybrid / London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org