The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121120
PDF

Naïve Bayes Classification of High-Resolution Aerial Imagery

Author 1: Asmala Ahmad
Author 2: Hamzah Sakidin
Author 3: Mohd Yazid Abu Sari
Author 4: Abd Rahman Mat Amin
Author 5: Suliadi Firdaus Sufahani
Author 6: Abd Wahid Rasib

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 11, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this study, the performance of Naïve Bayes classification on a high-resolution aerial image captured from a UAV-based remote sensing platform is investigated. K-means clustering of the study area is initially performed to assist in selecting the training pixels for the Naïve Bayes classification. The Naïve Bayes classification is performed using linear and quadratic discriminant analyses and by making use of training set sizes that are varied from 10 through 100 pixels. The results show that the 20 training set size gives the highest overall classification accuracy and Kappa coefficient for both discriminant analysis types. The linear discriminant analysis with 94.44% overall classification accuracy and 0.9395 Kappa coefficient is found higher than the quadratic discriminant analysis with 88.89% overall classification accuracy and 0.875 Kappa coefficient. Further investigations carried out on the producer accuracy and area size of individual classes show that the linear discriminant analysis produces a more realistic classification compared to the quadratic discriminant analysis particularly due to limited homogenous training pixels of certain objects.

Keywords: Naïve Bayes; k-means; classification accuracy; training set size; discriminant analysis

Asmala Ahmad, Hamzah Sakidin, Mohd Yazid Abu Sari, Abd Rahman Mat Amin, Suliadi Firdaus Sufahani and Abd Wahid Rasib, “Naïve Bayes Classification of High-Resolution Aerial Imagery” International Journal of Advanced Computer Science and Applications(IJACSA), 12(11), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121120

@article{Ahmad2021,
title = {Naïve Bayes Classification of High-Resolution Aerial Imagery},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121120},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121120},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {11},
author = {Asmala Ahmad and Hamzah Sakidin and Mohd Yazid Abu Sari and Abd Rahman Mat Amin and Suliadi Firdaus Sufahani and Abd Wahid Rasib}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org