The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121128
PDF

Statistical Analysis for Revealing Defects in Software Projects: Systematic Literature Review

Author 1: Alia Nabil Mahmoud
Author 2: Vítor Santos

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 11, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Defect detection in software is the procedure to identify parts of software that may comprise defects. Software companies always seek to improve the performance of software projects in terms of quality and efficiency. They also seek to deliver the soft-ware projects without any defects to the communities and just in time. The early revelation of defects in software projects is also tried to avoid failure of those projects, save costs, team effort, and time. Therefore, these companies need to build an intelligent model capable of detecting software defects accurately and efficiently. The paper is organized as follows. Section 2 presents the materials and methods, PRISMA, search questions, and search strategy. Section 3 presents the results with an analysis, and discussion, visualizing analysis and analysis per topic. Section 4 presents the methodology. Finally, in Section 5, the conclusion is discussed. The search string was applied to all electronic repositories looking for papers published between 2015 and 2021, which resulted in 627 publications. The results focused on finding three important points by linking the results of manuscript analysis and linking them to the results of the bibliometric analysis. First, the results showed that the number of defects and the number of lines of code are among the most important factors used in revealing software defects. Second, neural networks and regression analysis are among the most important smart and statistical methods used for this purpose. Finally, the accuracy metric and the error rate are among the most important metrics used in comparisons between the efficiency of statistical and intelligent models.

Keywords: Defects; software projects; statistical model; linear regression; logistic regression

Alia Nabil Mahmoud and Vítor Santos, “Statistical Analysis for Revealing Defects in Software Projects: Systematic Literature Review” International Journal of Advanced Computer Science and Applications(IJACSA), 12(11), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121128

@article{Mahmoud2021,
title = {Statistical Analysis for Revealing Defects in Software Projects: Systematic Literature Review},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121128},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121128},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {11},
author = {Alia Nabil Mahmoud and Vítor Santos}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org