The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121103
PDF

Human Action Recognition in Video Sequence using Logistic Regression by Features Fusion Approach based on CNN Features

Author 1: Tariq Ahmad
Author 2: Jinsong Wu
Author 3: Imran Khan
Author 4: Asif Rahim
Author 5: Amjad Khan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 11, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human Action recognition (HAR) gains too much attention due to its wide range of real world applications, such as video surveillance, robotics and computer vision. In video surveillance systems security cameras are placed to monitor activities and motion, generate alerts in undesirable situations. Due to such importance of video surveillance in daily life, HAR becomes the primary and key factor of video surveillance systems. Many researchers worked on human action recognition but HAR still a challenging problem, due to large variation among human to human and human actions in daily life, which make human recognition very challenging and makes surveillance system difficult to outperform. In this article a novel method is proposed by features fusion of pre-trained convolution neural network (CNN) features. Initially pre-trained CNN VGG 19 weights are exploited to extract fully connected 7th layer (FC7) of the selected dataset, subsequently pre-trained fully connected 8th layer features (FC8) extracted by employing pre-trained weights of the same neural network. However the resultant feature fused vector further optimized by employing two statistical features selection techniques, chi-square test and mutual information to select best features among them to reduced redundancy and increase performance accuracy of human action, a threshold value used for selecting best features. Furthermore the best features are fused, then grid search with 10 fold cross validation is applied for tuning hyper parameter to select best k fold and the resulting best parameter are feed to Logistic regression (LR) classifier for recognition. The proposed technique used You Tube 11 action dataset and achieved 98.49% accuracy. Lastly the proposed method compares with the existing state of the art methods which show dominance performance.

Keywords: Human action recognition; logistic regression; deep learning; convolution neural network; features fusion

Tariq Ahmad, Jinsong Wu, Imran Khan, Asif Rahim and Amjad Khan, “Human Action Recognition in Video Sequence using Logistic Regression by Features Fusion Approach based on CNN Features” International Journal of Advanced Computer Science and Applications(IJACSA), 12(11), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121103

@article{Ahmad2021,
title = {Human Action Recognition in Video Sequence using Logistic Regression by Features Fusion Approach based on CNN Features},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121103},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121103},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {11},
author = {Tariq Ahmad and Jinsong Wu and Imran Khan and Asif Rahim and Amjad Khan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org