The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121133
PDF

Enhancing the Takhrij Al-Hadith based on Contextual Similarity using BERT Embeddings

Author 1: Emha Taufiq Luthfi
Author 2: Zeratul Izzah Mohd Yusoh
Author 3: Burhanuddin Mohd Aboobaider

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 11, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Muslims are required to conduct Takhrij to validate the truth of Hadith text, especially when it is obtained from online media. Typically, the traditional Takhrij processes are conducted by experts and apply to Arabic Hadith text. This study introduces a contextual similarity model based on BERT Embedding to handle Takhrij on Indonesian Hadith Text. This study examines the effectiveness of BERT Fine-Tuning on the six pre-trained models to produce embedding models. The result shows that BERT Fine-Tuning improves the embedding model average accuracy by 47.67%, with a mean of 0.956845. The most high-grade accuracy was the BERT embedding built based on the indobenchmark/indobert-large-p2 pre-trained model on 1.00. In addition, the manual evaluation achieved 91.67% accuracy.

Keywords: Hadith text; Takhrij; natural language processing; text-similarity; word embedding; BERT fine-tuning

Emha Taufiq Luthfi, Zeratul Izzah Mohd Yusoh and Burhanuddin Mohd Aboobaider, “Enhancing the Takhrij Al-Hadith based on Contextual Similarity using BERT Embeddings” International Journal of Advanced Computer Science and Applications(IJACSA), 12(11), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121133

@article{Luthfi2021,
title = {Enhancing the Takhrij Al-Hadith based on Contextual Similarity using BERT Embeddings},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121133},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121133},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {11},
author = {Emha Taufiq Luthfi and Zeratul Izzah Mohd Yusoh and Burhanuddin Mohd Aboobaider}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org