The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Fuel Consumption Prediction Model using Machine Learning

Author 1: Mohamed A. HAMED
Author 2: Mohammed H.Khafagy
Author 3: Rasha M.Badry

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0121146

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 11, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the paper, we are enhancing the accuracy of the fuel consumption prediction model with Machine Learning to minimize Fuel Consumption. This will lead to an economic improvement for the business and satisfy the domain needs. We propose a machine learning model to predict vehicle fuel consumption. The proposed model is based on the Support Vector Machine algorithm. The Fuel Consumption estimation is given as a function of Mass Air Flow, Vehicle Speed, Revolutions Per Minute, and Throttle Position Sensor features. The proposed model is applied and tested on a vehicle’s On-Board Diagnostics Dataset. The observations were conducted on 18 features. Results achieved a higher accuracy with an R-Squared metric value of 0.97 than other related work using the same Support Vector Machine regression algorithm. We concluded that the Support Vector Machine has a great effect when used for fuel consumption prediction purposes. Our model can compete with other Machine Learning algorithms for the same purpose which will help manufacturers find more choices for successful Fuel Consumption Prediction models.

Keywords: Fuel consumption; machine learning; support vector machine; feature weight; feature selection; on-board diagnostic

Mohamed A. HAMED, Mohammed H.Khafagy and Rasha M.Badry, “Fuel Consumption Prediction Model using Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 12(11), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121146

@article{HAMED2021,
title = {Fuel Consumption Prediction Model using Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121146},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121146},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {11},
author = {Mohamed A. HAMED and Mohammed H.Khafagy and Rasha M.Badry}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2022

3-4 March 2022

  • Virtual

Computing Conference 2022

14-15 July 2022

  • Hybrid / London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org