The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121185
PDF

A Fast and Efficient Algorithm for Outlier Detection Over Data Streams

Author 1: Mosab Hassaan
Author 2: Hend Maher
Author 3: Karam Gouda

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 11, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Outlier detection over data streams is an important task in data mining. It has various applications such as fraud detection, public health, and computer network security. Many approaches have been proposed for outlier detection over data streams such as distance-,clustering-, density-, and learning-based approaches. In this paper, we are interested in the density-based outlier detection over data streams. Specifically, we propose an improvement of DILOF, a recent density-based algorithm. We observed that the main disadvantage of DILOF is that its summarization method has many drawbacks such as it takes a lot of time and the algorithm accuracy is significant degradation. Our new algorithm is called DILOFC that utilizing an efficient summarization method. Our performance study shows that DILOF􀀀 outperforms DILOF in terms of total response time and outlier detection accuracy.

Keywords: Data mining; outlier detection; data streams; density-based approach; clustering-based approach

Mosab Hassaan, Hend Maher and Karam Gouda, “A Fast and Efficient Algorithm for Outlier Detection Over Data Streams” International Journal of Advanced Computer Science and Applications(IJACSA), 12(11), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121185

@article{Hassaan2021,
title = {A Fast and Efficient Algorithm for Outlier Detection Over Data Streams},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121185},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121185},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {11},
author = {Mosab Hassaan and Hend Maher and Karam Gouda}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org