The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121188
PDF

Development of Predictions through Machine Learning for Sars-Cov-2 Forecasting in Peru

Author 1: Shal´om Adonai Huaraz Morales
Author 2: Marissel Fabiola Mio Antayhua
Author 3: Laberiano Andrade-Arenas

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 11, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The SARS-COV-2 virus of the coronavirus family was identified in 2019. This is a type of virus that infects humans and some animals, in Peru it has seriously affected everyone, causing so many deaths, which has resulted in that people be tested to rule out contagion, using laboratory methods recommended by the government of the country. Therefore, the data science methodology was used with this research, where its objective is to predict what types of people are contaminated during SARS-COV-2 by the regions of Peru, identified through laboratory methods, therefore, the ”data bank” was taken by PNDA, the CSV file was used for that study, apart from the fact that it comes from the INS and the CDC of the MINSA. In which, machine learning was developed with the decision tree algorithm and then began coding, in such a way that the distribution called Anaconda was used where it is encoded in Python language, together with that distribution, Jupyter Notebook was used which is a client-server application. The results generated by this research prove that it was possible to identify the types of individuals by SARS-COV-2. These results can help prevention entities against SARS-COV-2 to apply the corresponding preventive measures in a more focused way.

Keywords: Forecast; laboratory methods; machine learning; Python; SARS-COV-2

Shal´om Adonai Huaraz Morales, Marissel Fabiola Mio Antayhua and Laberiano Andrade-Arenas, “Development of Predictions through Machine Learning for Sars-Cov-2 Forecasting in Peru” International Journal of Advanced Computer Science and Applications(IJACSA), 12(11), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121188

@article{Morales2021,
title = {Development of Predictions through Machine Learning for Sars-Cov-2 Forecasting in Peru},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121188},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121188},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {11},
author = {Shal´om Adonai Huaraz Morales and Marissel Fabiola Mio Antayhua and Laberiano Andrade-Arenas}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org