The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121219

An Empirical Study on Fake News Detection System using Deep and Machine Learning Ensemble Techniques

Author 1: T V Divya
Author 2: Barnali Gupta Banik

PDF

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 12, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the revolution that happened in electronic gadgets in the past few years, information sharing has evolved into a new era that can spread the news globally in a fraction of minutes, either through yellow media or through satellite communication without any proper authentication. At the same time, all of us are aware that with the increase of different social media platforms, many organizations try to grab people's attention by creating fake news about celebrities, politicians (or) politics, branded products, and others. There are three ways to generate fake news: tampering with an image using advanced morphing tools; this is generally a popular technique while posting phony information about the celebrities (or) cybercrimes related to women. The second one deals with the reposting of the old happenings with new fake content injected into it. For example, in generally few social media platforms either to increase their TRP ratings or to expand their subscribers, they create old news that happened somewhere years ago as latest one with new fake content like by changing the date, time, locations, and other important information and tries to make them viral across the globe. The third one deals with the image/video real happened at an event or place, but media try to change the content with a false claim instead of the original one that occurred. A few decades back, researchers started working on fake news detection topics with the help of textual data. In the recent era, few researchers worked on images and text data using traditional and ensemble deep and machine learning algorithms, but they either suffer from overfitting problems due to insufficient data or unable to extract the complex semantic relations between documents. The proposed system designs a transfer learning environment where Neural Style Transfer Learning takes care of the size and quality of the datasets. It also enhances the auto-encoders by customizing the hidden layers to handle complex problems in the real world.

Keywords: Transfer learning; GANS; glove algorithms; word2vec; ensemble techniques; auto encoders; pre-trained models; word embeddings; BERT models

T V Divya and Barnali Gupta Banik, “An Empirical Study on Fake News Detection System using Deep and Machine Learning Ensemble Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 12(12), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121219

@article{Divya2021,
title = {An Empirical Study on Fake News Detection System using Deep and Machine Learning Ensemble Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121219},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121219},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {12},
author = {T V Divya and Barnali Gupta Banik}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2024

5-6 September 2024

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org