The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121202
PDF

New Feature Engineering Framework for Deep Learning in Financial Fraud Detection

Author 1: Chie Ikeda
Author 2: Karim Ouazzane
Author 3: Qicheng Yu
Author 4: Svetla Hubenova

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 12, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The total losses through online banking in the United Kingdom have increased because fraudulent techniques have progressed and used advanced technology. Using the history transaction data is the limit for discovering various patterns of fraudsters. Autoencoder has a high possibility to discover fraudulent action without considering the unbalanced fraud class data. Although the autoencoder model uses only the majority class data, in our hypothesis, if the original data itself has various feature vectors related to transactions before inputting the data in autoencoder then the performance of the detection model is improved. A new feature engineering framework is built that can create and select effective features for deep learning in remote banking fraud detection. Based on our proposed framework [19], new features have been created using feature engineering methods that select effective features based on their importance. In the experiment, a real-life transaction dataset has been used which was provided by a private bank in Europe and built autoencoder models with three different types of datasets: With original data, with created features and with selected effective features. We also adjusted the threshold values (1 and 4) in the autoencoder and evaluated them with the different types of datasets. The result demonstrates that using the new framework the deep learning models with the selected features are significantly improved than the ones with original data.

Keywords: Financial fraud; online banking; feature engineering; unbalanced class data; deep learning; autoencoder

Chie Ikeda, Karim Ouazzane, Qicheng Yu and Svetla Hubenova, “New Feature Engineering Framework for Deep Learning in Financial Fraud Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 12(12), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121202

@article{Ikeda2021,
title = {New Feature Engineering Framework for Deep Learning in Financial Fraud Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121202},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121202},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {12},
author = {Chie Ikeda and Karim Ouazzane and Qicheng Yu and Svetla Hubenova}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org