The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

New Feature Engineering Framework for Deep Learning in Financial Fraud Detection

Author 1: Chie Ikeda
Author 2: Karim Ouazzane
Author 3: Qicheng Yu
Author 4: Svetla Hubenova

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0121202

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 12, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The total losses through online banking in the United Kingdom have increased because fraudulent techniques have progressed and used advanced technology. Using the history transaction data is the limit for discovering various patterns of fraudsters. Autoencoder has a high possibility to discover fraudulent action without considering the unbalanced fraud class data. Although the autoencoder model uses only the majority class data, in our hypothesis, if the original data itself has various feature vectors related to transactions before inputting the data in autoencoder then the performance of the detection model is improved. A new feature engineering framework is built that can create and select effective features for deep learning in remote banking fraud detection. Based on our proposed framework [19], new features have been created using feature engineering methods that select effective features based on their importance. In the experiment, a real-life transaction dataset has been used which was provided by a private bank in Europe and built autoencoder models with three different types of datasets: With original data, with created features and with selected effective features. We also adjusted the threshold values (1 and 4) in the autoencoder and evaluated them with the different types of datasets. The result demonstrates that using the new framework the deep learning models with the selected features are significantly improved than the ones with original data.

Keywords: Financial fraud; online banking; feature engineering; unbalanced class data; deep learning; autoencoder

Chie Ikeda, Karim Ouazzane, Qicheng Yu and Svetla Hubenova, “New Feature Engineering Framework for Deep Learning in Financial Fraud Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 12(12), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121202

@article{Ikeda2021,
title = {New Feature Engineering Framework for Deep Learning in Financial Fraud Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121202},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121202},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {12},
author = {Chie Ikeda and Karim Ouazzane and Qicheng Yu and Svetla Hubenova}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org